Точность gps позиционирования


Позиционирования (gps) - Лекция

"Создание и редактирование векторных карт 

для навигационно-информационной системы ГИС Русса"

 

 

Лекция №4

 

 

  1. Глобальная система позиционирования (GPS).

  2. Принцип действия GPS.

  3. Географические информационные системы (ГИС).

Будем считать, что необходимый уровень теоретических знаний мы уже получили. То есть у Вас есть представление о картографии как о науке, Вы уже ориентируетесь в основных картографических терминах и, глядя на карту, можете рассказать о ней гораздо больше, чем ранее. Пока этого вполне достаточно. Теперь пришла пора разобраться с некоторыми понятиями, без которых нам дальше не обойтись. Нельзя сказать, что они непосредственно связаны с картографией. Точнее они связаны, кроме картографии, со многими областями нашей повседневной жизни. И с каждым днём всё более широко входят в нашу жизнь.

 

 Глобальная система позиционирования.

GPS (Global Positioning System) - это спутниковая система для высокоточного определения координат статичных и движущихся объектов. Разработана и обслуживается она Министерством обороны США, также известна у военных под кодовым названием NAVSTAR (Navigation Satellite Timing and Ranging).

Проект запущен в 1978 г. Первая штатная орбитальная группировка системы разворачивалась с июня 1989 г. по март 1994 г.: на орбиту были выведены 24 космических аппарата типа "Block II". Окончательный ввод GPS в эксплуатацию состоялся в 1995 г.

Следует отметить, что система GPS не была первой. Она пришла на смену устаревшей к тому времени системе "Tranzit" (начало разработки - 1964, запуск в работу - 1967). В ней местонахождение подвижного объекта устанавливалось по доплеровскому сдвигу частоты. В общих чертах, смысл этого метода можно описать следующим образом. Одно наблюдение спутника позволяет написать уравнение одной линии положения, имеющей форму либо гиперболы (доплеровский дифференциальный метод) либо более сложной кривой изодопы (доплеровский интегральный метод). При n наблюдениях положение наблюдателя получается в одной из точек пересечения n соответствующих гипербол или изодоп. Погрешность определения координат в этом случае составляла от 50 до 500м. Причём, чем больше была скорость наземного объекта, тем менее точными становились данные. Не стоит забывать и существовавшую в СССР систему "Цикада", которая фактически была аналогом "Tranzit". В 1963 году в СССР начались работы по построению этой системы. В 1967 году на орбиту был выведен первый отечественный навигационный спутник “Космос-192”. 

Характерной чертой радионавигационных спутниковых систем первого поколения является применение низкоорбитальных спутников и использование для измерения навигационных параметров объекта сигнала одного, видимого в данный момент спутника. По этим измерениям вычисляются параметры движения спутника относительно наземного пункта наблюдения. Решение обратной задачи — дело времени. В старых навигационных системах был невозможен непрерывный режим работы. Ввиду того, что системы низкоорбитны, время, в течение которого спутник находится в поле видимости, не превышает одного часа. Кроме того, время между прохождением различных спутников зоны видимости потребителя зависит от географической широты, на которой он находился, и может составить величину от 35 до 90 минут. Уменьшение этого интервала путём наращивания числа спутников невозможно, потому что все спутники излучали сигналы на одной и той же частоте. Гораздо более гибкой и эффективной была следующая система позиционирования - GPS.

Система GPS в целом состоит из трех сегментов - космического, управляющего и пользовательского. 

Космический сегмент состоит из сети 24 спутников, находящихся примерно на 12-часовых орбитах, на борту каждого из которых имеются атомные часы. Орбитальный радиус спутников - приблизительно равен четырем Земным радиусам (26 600 км). Орбиты почти круговые, с типичным эксцентриситетом, меньшим чем 1%. Наклон орбиты к экватору Земли - обычно 55 градусов. Спутники имеют орбитальные скорости около 3,9 км/с в системе координат с началом в центре Земли и не вращающейся относительно отдаленных звезд. Расчетные орбиты спутников лежат в шести равноотстоящих плоскостях. В каждой плоскости находится по четыре спутника, а угловое расстояние между спутниками в каждой плоскости равно примерно 90 градусам. Орбитальные периоды спутников приблизительно равны 11 часам и 58 минутам так, что проекция траектории спутника на поверхность Земли повторяется день за днем, потому что Земля делает один оборот относительно звезд каждые 23 часа и 56 минут. Четыре дополнительных минуты требуются, чтобы точка на Земле возвратилась в положение непосредственно под Солнцем, потому что Солнце перемещается приблизительно на один градус в день относительно звезд. 

На борту каждого спутника имеется 4 стандарта частоты (два цезиевых и два рубидиевых - для целей резервирования), солнечные батареи, двигатели корректировки орбит, приемо-передающая аппаратура, компьютер.

 

Структура сигналов L1 и L2.

 

Передающая аппаратура спутника излучает синусоидальные сигналы на двух несущих частотах: L1=1575,42 МГц и L2=1227,6 МГц. Перед этим сигналы модулируются так называемыми псевдослучайными цифровыми последовательностями. Эта процедура называется фазовой манипуляцией. Причём частота L1 модулируется двумя видами кодов: C/A-кодом (код свободного доступа) и P-кодом (код санкционированного доступа), а частота L2- только P-кодом. Кроме того, обе несущие частоты дополнительно кодируются навигационным сообщением, в котором содержатся данные об орбитах ИСЗ, информация о параметрах атмосферы, поправки системного времени.

Срок службы каждого спутника составляет около 10 лет, их заменяют по мере выхода из строя. 

Управляющий сегмент содержит главную станцию управления - авиабаза Фалькон в штате Колорадо, пять станций слежения, расположенных на американских военных базах на Гавайских островах, островах Вознесения, Диего-Гарсия, Кваджелейн и Колорадо-Спрингс и три станции закладки: острова Вознесения, Диего-Гарсия, Кваджелейн. Кроме того, имеется сеть государственных и частных станций слежения за ИСЗ, которые выполняют наблюдения для уточнения параметров атмосферы и траекторий движения спутников. Собираемая информация обрабатывается в суперкомпьютерах и периодически передается на спутники для корректировки орбит и обновления навигационного сообщения.

Пользовательским сегментом являются все, кто пользуются данными, посылаемыми спутниками. Если раньше пользователями в основном являлись военные и некоторые правительственные и научные учреждения, то на в настоящее время, за счёт доступности этой технологии, количество пользователей стремительно растёт. Путешествия, транспорт, слежение за животными и даже детьми, охранные системы - вот далеко не полный перечень применений системы GPS. Приёмники сигналов GPS представляют собой специализированный компьютер. По анализу сигналов, поступающих со спутников, он рассчитывает своё текущее местоположение. Если это положение меняется, то становится возможным расчёт дополнительных параметров - скорость, направление, время прибытия к целевому пункту назначения и т.п.  Для отслеживания спутников нужно быть под открытым небом - под крышей или в тесном окружении высотных домов сигналы от спутников частично или полностью гасятся препятствиями. Облачность и осадки влияния на качество сигнала практически не оказывает, стекло и пластик - тоже не помеха.

Помимо системы GPS сегодня существует её российский аналог. Называется он ГЛОНАСС, что означает Глобальная навигационная спутниковая система. Она стала разрабатываться в СССР также, как и GPS, в середине 70-х гг. и в 1993 г. была официально принята в эксплуатацию МО РФ. Американская GPS и отечественная ГЛОНАСС концептуально аналогичны и отличаются некоторыми аспектами технической реализации. Но, в отличии от американской, система ГЛОНАСС предназначена пока только для военного применения. Кроме того, из запланированных 24 спутников, их реальное количество составляет всего 10. Таким образом практического интереса для нас с Вами эта система в настоящее время не представляет.

Гораздо более интересно скорое появление другой навигационной спутниковой системы. Её название - Galileo. Эта система создаётся в тесном сотрудничестве множества европейских стран. Интерес к ней проявляют и страны Азии. Ориентировочной датой реализации этой программы является 2008 год. Эта навигационная система так же, как и GPS, ориентирована на общий доступ различных потребителей. Пока ведутся подготовительные работы и научно-технологические исследования. 

Созвездие Galileo будет состоять из 27 спутников в трех орбитальных плоскостях, каждая с 9 спутниками, равномерно распределенными в пределах круговой орбиты. Ключевые параметры - орбитальный радиус 29994 километров и склонение 56 градусов. Чтобы обеспечивать необходимую избыточность на орбите и позволить быстрое восстановление в случае отказа спутников, предполагаются три активных резервных спутника, по одному в каждой орбитальной плоскости. Кроме этого будут применены новые частотные диапазоны, сигналы и методы обработки данных, что, как предполагается, значительно повысит точность определения положения по сравнению с системой GPS. Однако существующие приёмники не смогут воспринимать данные, передаваемые навигационной системой Galileo .   

Принцип действия GPS.

Теперь давайте вкратце разберём принцип действия системы GPS.

Принцип определения координат точки известен человечеству давно. С течением времени он практически не изменился, совершенствовались лишь инструменты и технологии их применения. Еще во время Первой мировой войны в Российской армии для обнаружения места расположения германской артиллерии использовали примитивные датчики. Они вырабатывали электрический сигнал в момент приёма звука выстрела вражеской пушки. Датчики располагали в нескольких точках с известными координатами и на основании разницы во времени поступления на них звуковых сигналов, вычисляли место расположения батарей противника.

Во время Второй мировой войны англичане пошли дальше. Методы определения координат удалённой точки они использовали для наведения на германские цели своих бомбардировщиков. В их распоряжении были радиостанции-маяки, по функциональному назначению ничем не отличающиеся от современных космических спутников. Маяки располагались на Британских островах, а навигационные приемники - на борту бомбардировщиков. Курс самолетов корректировался по поступающим с маяков радиосигналам, и это, в значительной степени, обеспечивало высокую точность ночных бомбардировок английской авиации.

 

Основы системы GPS можно разбить на пять основных подпунктов:

  1. Спутниковая трилатерация - основа системы определения положения.

  2. Спутниковая дальнометрия – измерение расстояний до спутников.

  3. Точная временная привязка – зачем нужно согласовывать часы в приёмнике и на спутнике и для чего требуется 4-й космический аппарат.

  4. Расположение спутников – определение точного положения спутников в космосе.

  5. Коррекция ошибок – учёт ошибок вносимых задержками в тропосфере и ионосфере.

Спутниковая трилатерация.

Точные  координаты могут быть вычислены для места на поверхности Земли по измерениям расстояний от группы спутников, если известно их точное положение в космосе. В этом случае спутники являются пунктами с известными координатами. Предположим, что расстояние от одного спутника известно и мы можем описать сферу заданного радиуса вокруг него.

 

 

Если мы знаем также расстояние и до второго спутника, то определяемое местоположение будет расположено где-то в круге, задаваемом пересечением двух сфер.

 

 

Третий спутник определяет две точки на окружности.

Теперь остаётся  только выбрать правильную точку. Однако одна из точек всегда может быть отброшена, так как она имеет высокую скорость перемещения или находится на или под поверхностью Земли. Таким образом, зная расстояние до трёх спутников, можно вычислить координаты определяемой точки.

Спутниковая дальнометрия.

Расстояние до спутников определяется по измерениям времени прохождения радиосигнала от космического аппарата до приёмника умноженным на скорость света. Для того, чтобы определить время распространения сигнала нам необходимо знать когда он покинул спутник.

Для этого на спутнике и в приёмнике  одновременно генерируется одинаковый псевдослучайный код.

Как уже было сказано, каждый спутник GPS передаёт два радиосигнала: на частоте L1=1575.42 МГц и L2=1227.60 МГц. Сигнал L1 имеет два дальномерных кода с псевдослучайным шумом (PRN), P-код и C/A код. “Точный” или P-код может быть зашифрован для военных целей. “Грубый” или C/A код не зашифрован. Сигнал L2 модулируется только с P-кодом. Большинство гражданских пользователей используют C/A код при работе с GPS системами. Некоторые приёмники геодезического класса работают с P-кодом.

Приёмник проверяет входящий сигнал со спутника и определяет когда он генерировал такой же код. Полученная разница, умноженная на скорость света (~ 300000 км/с) даёт искомое расстояние.

Использование кода позволяет приёмнику определить временную задержку в любое время. Кроме того, спутники могут излучать сигнал на одной и той же частоте, так как каждый спутник идентифицируется по своему псевдослучайному коду (PRN или PseudoRandom Number code).

Точная временная привязка.

Как видно  из сказанного выше, вычисления напрямую зависят от точности хода часов. Код должен генерироваться на спутнике и приёмнике в одно и то же время. На спутниках установлены атомные часы имеющие точность около одной наносекунды. Однако было бы слишком дорого устанавливать такие часы в каждый GPS приёмник, поэтому измерения от четвёртого спутника используются для устранения ошибок хода часов приёмника. На самом деле коррекция происходит с использованием всех видимых в данный момент спутников. Чем больше спутников, тем больше точность коррекции и точек пересечения сфер. всё это ведёт к повышению точности определения координат.

Эти измерения можно использовать для устранения ошибок, которые возникают если часы на спутнике и в приёмнике не синхронизированы. Для наглядности возьмём пример с четырьмя спутниками. Иллюстрации, приведённые ниже, рассматривают ситуацию на плоскости, так как только три спутника необходимо для вычисления местоположения объекта.

Если часы на спутнике  и в приёмнике имеют одинаковую точность хода, то точное местоположение может быть найдено по измерениям расстояния до двух спутников.

 

 

Если получены измерения с трёх спутников и все часы точные, то круг описанный радиус-вектором от третьего спутника будет пересекаться как показано на рисунке.

 

 

Однако, если часы в приёмнике спешат на 1 секунду, то картина будет выглядеть следующим образом.

 

 

Если сделать замер до третьего спутника, то полученный радиус-вектор не пересечётся с двумя другими как показано на рисунке.

Когда GPS приёмник  получает серию измерений которые не пересекаются в одной точке, то компьютер в приёмнике начинает вычитать (или добавлять) время методом последовательных итерации до тех пор, пока не сведёт все измерения к одной точке. После этого вычисляется поправка и делается соответствующее уравнивание.

Если вам требуется третье измерение или, иначе говоря, данные о Вашей текущей высоте, то необходим четвёртый спутник для устранения ошибок хода часов в приёмнике. Таким образом, при работе в поле вам необходимо иметь минимум четыре спутника, чтобы определить трёхмерные координаты объекта.

 

 

Расположение спутников

Как уже было сказано выше, система GPS имеет 24 рабочих спутника с орбитальным периодом в 12 часов на высоте примерно 20200 км от поверхности Земли. Указанная высота необходима для обеспечения стабильности орбитального движения спутников и уменьшения фактора влияния сопротивления атмосферы.

Министерство Обороны США (DoD) осуществляет непрерывное слежение за спутниками. На каждом спутнике расположено несколько высокоточных атомных часов и они непрерывно передают радиосигналы с собственным уникальным идентификационным кодом. МО США имеет 4 станции слежения за спутниками, три станции связи и центр осуществляющий контроль и управление за всем наземным сегментом системы. Станции слежения непрерывно отслеживают спутники и передают данные в центр управления. В центре управления вычисляются уточнённые элементы  спутниковых орбит и коэффициенты поправок спутниковых шкал времени, после чего эти данные передаются по каналам станций связи на спутники по крайней мере один раз в сутки.

Источники ошибок.

Неточное определение времени. При всей точности временных эталонов, установленных на спутниках, существует некоторая погрешность шкалы времени их аппаратуры. Она приводит к возникновению систематической ошибки определения координат. Типичное значение погрешности составляет около 0,6м.

Ошибки вычисления орбит. Появляются вследствие неточностей прогноза и расчета орбит спутников, выполняемых в аппаратуре приемника. Эта погрешность также носит систематический характер и приводит к ошибке измерения координат около 0,6м.

Инструментальная ошибка приемника. Обусловлена, прежде всего, наличием шумов в электронном тракте приемника. Отношение сигнал/шум приемника определяет точность процедуры сравнения принятого со спутника и опорного сигналов, т.е. погрешность вычисления расстояний расстояний . Наличие данной погрешности может привести к возникновению координатной ошибки порядка 1,2м.

Отражения сигнала. Появляется в результате вторичных отражений сигнала спутника от крупных препятствий, расположенных в непосредственной близости от приемника. При этом возникает явление интерференции, и измеренное расстояние оказывается больше действительного. Аналитически данную погрешность оценить достаточно трудно, а наилучшим способом борьбы с нею считается рациональное размещение антенны приемника относительно препятствий. Данный эффект может присутствовать в случаях, когда около приёмника находится достаточно большой и высокий объект. Типичным случаем являются улицы городов, каньоны или гористая местность. В данном случае может наблюдаться кратковременная ошибка в десятки метров.

Ионосферные задержки сигнала. Ионосфера – это ионизированный атмосферный слой в диапазоне высот 50 – 500 км, который содержит свободные электроны. Наличие этих электронов вызывает задержку распространения сигнала спутника, которая прямо пропорциональна концентрации электронов и обратно пропорциональна квадрату частоты радиосигнала. Для частичной компенсации этой погрешности может быть использована модель коррекции, которая аналитически рассчитывается с использованием информации, содержащейся в навигационном сообщении. При этом величина остаточной немоделируемой ионосферной задержки может вызывать погрешность определения расстояний около 5м.

Тропосферные задержки сигнала. Тропосфера – самый нижний от земной поверхности слой атмосферы (до высоты 8 – 13 км). Она также обуславливает задержку распространения радиосигнала от спутника. Величина задержки зависит от метеопараметров (давления, температуры, влажности), а также от высоты спутника над горизонтом. Компенсация тропосферных задержек производится путем расчета математической модели этого слоя атмосферы. Необходимые для этого коэффициенты содержатся в навигационном сообщении. Тропосферные задержки вызывают ошибки измерения расстояний в 1 м.

Геометрическое расположение спутников. При вычислении суммарной ошибки необходимо еще учесть взаимное положение приёмника и спутников рабочего созвездия. Для этого вводится специальный коэффициент геометрического ухудшения точности PDOP (Position Dilution Of Precision). Величина коэффициента PDOP зависит от взаимного расположения спутников и приемника. Она обратно пропорциональна объему фигуры, которая будет образована, если провести единичные векторы от приемника к спутникам. Самым неблагоприятным будет считаться такое расположение, когда спутники выстраиваются в одну линию или расположены очень близко друг к другу. Это бывает исключительно редко и, учитывая их орбитальную скорость, длится не более 15-30 минут. Наилучшим считается такое расположение, когда спутники расположены равномерно по всей видимой небесной сфере.

Избирательный доступ. Раньше существовал ещё один источник ошибок – это Избирательный Доступ (Selective Availability или S/A), искусственное снижение точности спутникового сигнала вводимое МО США. Это приводило к тому, что точность полученных координат с помощью GPS снижалась до 100 метров. Однако 1 мая 2000 года по решению президента США "Избирательный Доступ" был отключен. С этого момента реальная точность определения координат составляет 5-10м при получении сигналов с четырёх и более спутников. Однако известно, что МО США включало режим избирательного доступа над территорией боевых действий армии США для дезориентации противника. Однако, учитывая глобальное распространение навигационной техники во многих отраслях народного хозяйства всего мира, представляется нереальным возврат к принудительной генерации ошибки в системе GPS.

Теперь, когда нам понятен смысл понятия и принцип действия системы GPS, давайте перейдём к следующему пункту нашей лекции.

 

Географические информационные системы (ГИС).

 В том, что владение точной и достоверной информацией есть важнейшее условие достижения успеха, уже никого не нужно убеждать. Но еще более важно уметь работать с имеющейся информацией. Методы работы с данными постоянно совершенствуются, и теперь уже привычно видеть документы, таблицы, графики, чертежи и картинки на экране компьютера. При помощи компьютера мы создаем и изменяем, извлекаем и анализируем данные. Одним из типов документов, в который компьютер вдохнул новую жизнь, стала и географическая карта.

 Существуют виды деятельности, в которых карты - электронные, бумажные или хотя бы представляемые в уме - незаменимы. Ведь многие дела невозможно начать, не выяснив предварительно, где именно находится точка приложения наших усилий. Даже в быту, мы ежечасно и иногда даже ежеминутно работаем с информацией о географическом положении объектов - магазин, детский сад, метро, работа, школа… Пространственное мышление естественно для нашего сознания.

 Последние десятилетия ознаменовались бумом в области применения карт, и связано это с возникновением Географических Информационных Систем, воплотивших принципиально новый подход в работе с пространственными данными.

 Географическая Информационная Система - или ГИС - это компьютерная система, позволяющая показывать необходимые данные на электронной карте. Карты, созданные с помощью ГИС, можно смело назвать картами нового поколения. На карты ГИС можно нанести не только географические, но и статистические, демографические, технические и многие другие виды данных и применять к ним разнообразные аналитические операции. ГИС обладает уникальной способностью выявлять скрытые взаимосвязи и тенденции, которые трудно или невозможно заметить, используя привычные бумажные карты. Мы видим новый, качественный, смысл наших данных, а не механический набор отдельных деталей.

Электронная карта, созданная в ГИС, поддерживается мощным арсеналом аналитических средств, богатым инструментарием создания и редактирования объектов, а также базами данных, специализированными устройствами сканирования, печати и другими техническими решениями, средствами Интернет - и даже космическими снимками и информацией со спутников.

 Вся информация, полученная благодаря использованию технологий ГИС, используются не специалистами-географами, а обычными людьми - учеными, бизнесменами, врачами, адвокатами, чиновниками, маркетологами, строителями, экологами - и даже домохозяйками, если не они желают зря тратить время на обход магазинов.

 С помощью ГИС природоохранные организации следят за состоянием лесов, рек и почв. Коммунальные службы планируют и проводят мероприятия по обслуживанию городских сетей. Спасатели, пожарники и ремонтники оперативно рассчитывают оптимальные маршруты.

 ГИС все шире применяются в бизнесе. Так, например, владелец сети магазинов, поместив на карту потенциальных покупателей своей продукции, может обнаружить, в каких районах города они преимущественно живут. Перевозчики грузов повышают надежность доставки, экономят время и горючее за счет оптимизации маршрутов. Продавцы и покупатели недвижимости не могут без них принимать решения. Внимательный взгляд на карту - и обнаруживаются резервы в обслуживании, незамеченные конкурентами, намечаются оптимальные места для размещения рекламных щитов, планируются новые торговые точки и многое другое.

Как работает ГИС

 В отличие от обычной бумажной карты, электронная карта, созданная в ГИС, содержит скрытую информацию, которую можно «активизировать» по необходимости. Эта информация организуется в виде слоев, которые можно назвать тематическими, потому что каждый слой состоит из данных на определенную тему. Например, если вы изучаете определенную территорию, то один слой карты может содержать данные о дорогах, второй - о водоемах, третий – о проживающем там населении, четвертый о больницах и так далее.

 Вы можете просматривать каждый слой-карту по отдельности, а можете совмещать сразу несколько слоев, или выбирать отдельную информацию из различных слоев и выводить ее на карту. Вы также можете моделировать различные ситуации, всякий раз получая изображения в соответствии с поставленной задачей, причем без необходимости создавать новую карту.

 Из широкого круга вопросов, на которые ГИС может дать ответ, можно выделить следующие:

Что находится на…?

Где находится…?

Что изменилось с…?

Что если..?

Давайте рассмотрим самый простейший пример того, как с помощью ГИС вы можете прийти к оптимальному решению.

 Например, вы решили построить сеть закусочных. Прежде всего, вам нужно будет выяснить ситуацию со спросом и предложением на рынке быстрого питания. То есть вы можете изучить количество и расположение уже существующих сетей быстрого питания и выделить для себя не охваченные предложением зоны.

 Затем нужно будет проанализировать возможные зоны обслуживания. Вероятно, вы захотите, чтобы они располагались в местах наибольшей концентрации потенциальных клиентов. Вы можете провести целенаправленный демографический анализ интересующих вас зон. Это могут быть учреждения, школы, станции метро, вокзалы, автостанции и так далее.

 Как только вы выяснили ситуацию с расположением потенциальных конкурентов и наличием достаточного количества клиентов, вы можете начать планировать расположение своих точек. При этом придется учитывать не только спрос и предложение, но и многие другие факторы. Например, нужно будет убедиться в наличие коммуникаций в местах предполагаемого размещения точек. Ведь вам необходимы будут вода и газ, иначе строительство собственных коммуникаций может принести дополнительные расходы. Налог на землю – тоже немаловажный фактор при расчете общих инвестиций в новый бизнес. Эту информацию вы также можете получить в базе данных ГИС.

 Конечным этапом вашей работы будет выведенная на экран компьютера карта, которая наглядно представит вам результаты вашего анализа. Первым слоем вашей карты будет карта города. Второй слой будет отражать расположение сети закусочных конкурентов. Третий слой - учреждения. Четвертый слой - станции метро, пятый - школы, шестой - автодороги и так далее. Таким образом вы составляете многослойную карту, слои которой вы можете “листать” по очереди, накладывать друг на друга и использовать вместе, получая более сложную картину, позволяющую вам видеть ситуацию в целом. Кроме того, данные, которые вы используете можно обновлять, что автоматически будет отражено на карте. И для этого вам не придется составлять десяток отдельных карт и выводить их на печать - ведь карты ГИС динамичные, а не статичные.

 И это только малая часть того, что может ГИС. Аэропорты и нефтедобывающие компании, транспортные организации и промышленные корпорации признают эффективность, экономичность и удобство в применении ГИС. Преимущества карт, созданных в ГИС, очевидны: вы можете работать с широким спектром данных и помещать их на карту; вы можете проводить анализ данных и моделировать различные сценарии решений, что поможет избежать ошибки; вы можете видеть результат в наглядной, а значит в более понятной форме; карты ГИС интерактивны, то есть вы можете вводить и изменять данные без необходимости всякий раз составлять новые карты.

Какие бывают ГИС?

Существуют самые разнообразные компьютерные системы и отдельные программы, которые принято относить к ГИС. Самые компактные и маленькие помещаются на дискетах и заменяют обычные печатные городские справочные издания. На них можно просматривать и искать информацию, но нельзя помещать свою. С другой стороны, если перед вами стоят профессиональные задачи, требующие применения картографических знаний и технологий, то в вашем распоряжении мощные специализированные рабочие станции и комплексы.

 Если же вы хотите полноценно и интерактивно работать с картами, не приобретая картографического образования и разумно вкладывая средства, то лучшим решением будет выбрать ГИС, спроектированную для нужд обычного пользователя и снабженную привычным графическим интерфейсом. Такие ГИС удачно сочетают мощь и простоту в использовании. Вы можете, начав с естественных и несложных операций, постепенно подниматься до профессионального уровня, повышая на каждом шагу эффективность своей работы.

 Кроме многофункциональных ГИС, существуют также узкоспециальные, применяются в отдельных областях деятельности и требуют специального оборудования и методов обработки данных.

Компоненты ГИС .

При планировании использования ГИС для решения конкретных задач обычно рассматриваются следующие составляющие системы:

·     Компьютер

·     Программа

·     Данные

·     Пользователи

·     Метод

 Компьютер

Компьютер для работы с ГИС может быть от простейших ПК и КПК до мощнейших суперкомпьютеров. Компьютер является основой оборудования ГИС и получает данные через сканер или из баз данных. Наблюдать и анализировать данные ГИС позволит монитор.  Принтеры и плоттеры – наиболее распространенные средства для выведения конечных результатов проделанной на компьютере работы с ГИС.

Программа

Программное обеспечение ГИС обеспечивает функции и средства, необходимые для хранения, анализа и представления географической информации. Наиболее широко используемые программы ГИС - MapInfo, ARC/Info, AutoCAD Map и другие. Тем не менее, следует помнить, что программы имеют свою специфику: если необходима недорогая и несложная в применении программа - MapInfo будет наиболее приемлемой, поскольку она проста в работе и поддерживает многие особенности ГИС. ARC/Info пригодится для более специфического и дорогостоящего анализа, а для тех, кто уже использует AutoCad и хочет использовать ГИС - AutoCad Map может быть лучшим вариантом.

Данные

Выбор данных зависит от задачи и ваших финансовых возможностей. Данные могут быть использованы из различных источников – базы данных вашей организации, Интернет, коммерческие базы данных и т.д.

Пользователи

Люди, пользующиеся ГИС, условно могут быть разделены следующие группы: операторы ГИС, чья работа заключается в размещении данных на карте, инженеров/пользователей ГИС, чья функция заключается в анализе и дальнейшей работе с этими данными и теми, кому на основании полученных результатов нужно принять решение. Кроме того, ГИС могут пользоваться широкие слои населения через готовые программные приложения или Интернет.

Метод

Существует много способов создания карт в ГИС и методов дальнейшей работы с ними. Наиболее продуктивной будет та ГИС, которая работает в соответствии с хорошо продуманным планом и операционными подходами, соответствующими вашей задаче.

_______________

 

Свои вопросы по пройденному материалу Вы можете задавать на нашем форуме.

 

Перейти к лекции N5.

refdb.ru

Точность ГЛОНАСС повысят в два раза до конца текущего года | Статьи

Предприятия Роскосмоса, участвующие в программе ГЛОНАСС, обещают улучшить точность определения координат с помощью системы ГЛОНАСС до 1,4 м уже к концу этого года — сейчас точность позиционирования в отечественной навигационной системе составляет 2,7 м. Прогноз повышения точности приведен в презентации начальника Информационно-аналитического центра координатно-временного и навигационного обеспечения ЦНИИмаша (есть в распоряжении «Известий»).

В ЦНИИмаше «Известиям» пояснили, что в настоящее время Роскосмос совместно с Минобороны России разрабатывают программу использования технических решений, заложенных в космических аппаратах серии «Глонасс-М», результатом которой и станет запланированное повышение точности.  

— В частности, в компании «Российские космические системы» разработана бортовая аппаратура межспутниковых измерений и специальные наземные станции, которые в совокупности позволяют повысить оперативность закладки эфемеридно-временной информации на борт уже находящихся в космосе космических аппаратов, — пояснили в ЦНИИмаше. — Совместно с реализацией программы развития зарубежных станций ГЛОНАСС это позволит обеспечить повышение тактико-технических характеристик комплекса ГЛОНАСС.

По словам Николая Тестоедова, генерального директора и генерального конструктора компании «Информационные спутниковые системы им. академика М.Ф. Решетнёва» (производитель аппаратов ГЛОНАСС), сейчас закладка эфемерид (данных о местоположении спутника) на борт осуществляется каждые 12 часов. 

— Закладка точных данных о местоположении спутника производится в момент, когда аппарат пролетает над территорией России, — объясняет Тестоедов. — Данные заложены, и дальше спутник летит 12 часов, в течение которых на него воздействуют множество факторов: солнечный ветер, влияние Луны, неравномерность земной поверхности и т.д. В спутнике заложена математическая модель, все эти факторы учитывающая, но всё равно за 12 часов аппарат накапливает определенное отклонение от теоретической траектории. Которое и дает погрешность определения координат. Если мы будем чаще закладывать на борт спутника точные эфемериды — не два, а четыре раза в сутки, — тогда погрешность ухода от идеальной траектории будет в два раза меньше. Именно это мы и планируем сделать, используя межспутниковые линии: мы загружаем эфемериды на спутник, летящий над Россией, и он по межспутниковой линии передает данные другим аппаратам. Тем самым мы повышаем частоту закладки эфемерид, что и дает основной вклад в повышение точности. 

По словам Тестоедова, результаты работы, то есть существенное повышение точности, будут заметны ближе к концу года. 

— GPS сегодня демонстрирует точность определения координат в районе 1 м. Разницу в точности между российской и американской системой мы всё время снижаем, — говорит Тестоедов. — Повышение точности, условно говоря, с 1 м до 0,5 м — это принципиально более сложная задача, чем повышение точности с 3 м до 1 м. Американцы тоже повышают точность GPS, но мы пока проходим тот отрезок пути, где понятными решениями можно снимать большие куски погрешности. Поэтому мы их и догоняем. Как только мы приблизимся к метровой точности, нам будет уже очень большой кровью даваться каждый новый сантиметр точности.

Целевые показатели «Поддержание, развитие и использование системы ГЛОНАСС на 2012–2020 годы» предусматривают повышение точности позиционирования до 60 см к 2020 году. По словам главы «ИСС имени Решетнёва», такой точности позволит достичь обновленная группировка спутников «Глонасс-К» с более точными бортовыми часами.

Атомные часы — сердце навигационного спутника. Его передатчики излучают сигнал, содержащий точное время и координаты аппарата в данный момент. Получив сигналы от нескольких навигационных спутников, чип в пользовательском приборе, будь то телефон или навигатор, высчитывает свои координаты. Чем более точные данные он получает, тем более аккуратно определяет координаты. 

iz.ru

Применение спутников ГЛОНАСС/GPS

Определение координат по наблюдениям спутников навигационных систем выполняется абсолютными, дифференциальными и относительными методами.В абсолютном методе координаты получаются одним приемником в системе координат, носителями которой являются станции подсистемы контроля и управления и, следовательно, сами спутники навигационной системы. При этом реализуется метод засечки положения приемника от известных положений космических аппаратов (КА). Часто этот метод называют также точечным позиционированием.В дифференциальном и относительном методах наблюдения производят не менее двух приемников, один из которых располагается на опорном пункте с известными координатами, а второй совмещен с определяемым объектом. В дифференциальном методе по результатам наблюдений на опорном пункте отыскиваются поправки к соответствующим параметрам наблюдений для неизвестного пункта или к его координатам, то есть наблюдения обрабатываются раздельно. Этот метод обеспечивает мгновенные решения, обычно называемые решениями в реальном времени. ВВ них достигается более высокая точность, чем в абсолютном методе, но только по отношению к опорной станции. В относительном методе наблюдения, сделанные одновременно на опорном и определяемом пункте, обрабатываются совместно. Это основное различие между относительным и дифференциальным методом, которое приводит к повышению точности решений в относительном методе, но исключает мгновенные решения.

В относительном методе определяется вектор, соединяющий опорный и определяемый пункты, называемый вектором базовой линии.Наблюдения в реальном времени (абсолютные, дифференциальные или относительные) предполагают, что полученное положение будет доступно непосредственно на месте позиционирования, пока наблюдатель находится на станции. При пост-обработке результаты получают после ухода с пункта наблюдений. В каждом из трех указанных методов определений координат возможны измерения как по кодовым псевдодальностям (по фазе кода), так и по фазе несущей. Точность кодовых дальностей имеет метровый уровень, в то время как точность фазовых измерений лежит в миллиметровом диапазоне. Точность кодовых дальностей, однако, можно улучшить, если использовать метод узкого коррелятора или сглаживание по фазе несущей, достигая при этомдециметровый и даже более высокий уровень точности. В отличие от фазнесущих колебаний, кодовые дальности фактически не содержатнеоднозначностей. Это делает их невосприимчивыми к потерям счета циклов (то есть изменениям неоднозначностей фазы) и, в некоторой степени, к препятствиям на пункте. Для фазовых же измерений критическим моментом является разрешение их неоднозначностей.Точность абсолютного метода позиционирования по кодовым GPSизмерениям определяется возможностями Службы стандартного позиционирования (SPS) или Службы точного позиционирования (PPS). При выключенном режиме селективного доступа SA гражданским пользователям стандартное GPS позиционирование обеспечивает в 95% случаев точность 15 м. Возможности абсолютного метода по измерениям фазы ограничиваются точностью эфемерид и параметров часов спутников. Использовать бортовые данные спутников при их метровом уровне точности нецелесообразно, а точные апостериорные эфемериды появляются с большой задержкой. Поэтому абсолютное позиционирование по фазе несущей пока применяется редко. Точность дифференциального и относительного метода значительно выше, чем в соответствующих вариантах абсолютного метода, и может достигатьсантиметрового и даже более высокого уровня. Однако следует обратитьвнимание на два момента. Во-первых, поскольку в этих методах координаты неизвестных пунктов находятся относительно опорного пункта, то погрешности координат этого пункта полностью войдут в координаты определяемых точек, то есть вся развиваемая сеть оказывается смещенной. Во-вторых, поскольку координаты определяемых пунктов используются для вычисления компонентбазовых линий, то это также будет сказываться на точности определенияприращений координат между опорным и определяемым пунктом. В каждом из методов возможны наблюдения в режимах статики и кинематики. При статических наблюдениях оба приемника находятся встационарном положении относительно Земли, а при кинематическомпозиционировании один из приемников является стационарным, а другой – движущимся. Оба приемника одновременно наблюдают одни и те же спутники.Потеря захвата сигнала спутника для статического позиционирования не является настолько важной, как при кинематическом позиционировании. Статическое позиционирование позволяет накапливать данные, добиваясь повышения точности. Относительное позиционирование по фазовым измерениям является наиболее точным методом определения положений и наиболее часто используется геодезистами. Преимуществом кинематического позиционирования является его возможность получать траекторию движения транспортного средства, на котором установлена спутниковая аппаратура. Техника фазовых наблюдений значительно сложнее техники кодовых измерений. Во-первых, это объясняется необходимостью обеспечивать непрерывность измерений фазы несущей. При наблюдениях кодовым приемником каждое измерение производится независимо от остальных. Потеря захвата сигнала какого-либо спутника, как правило, не влияет на полноту остальных данных. Поэтому, в принципе, можно ограничиться однократным фиксированием координат, если устраивает их точность. При фазовых измерениях для разрешения неоднозначностей фазовых отсчетов наблюдений одной эпохи недостаточно. Поэтому, чтобы набрать необходимый объем данных, наблюдения проводят достаточно длительное время. Во-вторых, разный уровень точности наблюдений по кодам и по фазе предполагает соответствие вспомогательного оборудования обработки и т. п.Объединение GPS и ГИСГеографические информационные системы (ГИС) представляют собой компьютерное средство, способное накапливать, хранить, управлять, анализировать и выводить на экран и другие носители пространственно распределенные данные. Пространственные данные – это данные, которые распознаются в соответствии с их географическим положением (такие объекты, как улицы, дороги, здания, пожарные гидранты и т. д.).Пространственные или географические данные можно получить из таких разнообразных источников, как, например, существующие карты, снимки из космоса и GPS. Когда информация накоплена, ГИС хранит ее как набор слоев в своей базе данных. После этого ГИС можно использовать для анализа информации и эффективного принятия решений. Системы СРНС используются для сбора полевых данных ГИС эффективно и точно. С GPS приемником данные могут собираться в цифровом формате в режиме реального времени или в пост-обработке. Сейчас на рынке имеется несколько систем GPS/ГИС, которые обеспечивают уровень точности от сантиметра до метра. Большинство из этих систем позволяют пользователю вводить атрибуты для каждого объекта съемки. Имеются также встроенные навигационные функции, позволяющие повторно определять положение объектов собственности.Некоторыми производителями GPS аппаратуры выпускаются системы с компьютерным пером, позволяющие редактировать данные в процессе сбора. В залесенных районах ГЛОНАСС/GPS приемники обычно теряют захват сигналов спутников. В дополнение к этому затрудняется прием поправок при работе в режиме RTK. Чтобы преодолеть эти проблемы, были разработаны системы, объединяющие спутниковый приемник с лазерным дальномером (лазерной рулеткой). В этом способе объединенная система устанавливается на открытом месте, где нормально функционирует GPS приемник без потерзахвата спутников. С помощью цифрового компаса, безотражательного дальномера, расположенного вместе с приемником, можно определятьрасстояние и азимут до недоступных точек. Программа, установленная в ручном компьютере, помогает собирать данные и дальномера, и приемника. В последнее время вся доступная информация обрабатывается программой компьютера, определяя координаты недоступных точек. Сбор и обработка данных могут происходить в реальном времени, в поле, при условии, что обеспечивается прием дифференциальных поправок. Как только обработка сделана, пользователь может экспортировать выходные данные в нужную ГИС.Объединение GPS приемника и лазерного дальномераОбъединение GPS приемника и лазерного дальномера является привлекательным средством, особенно в лесном хозяйстве. Расстояния додеревьев, их высоту и диаметр можно легко измерять лазерным устройством. Разработано несколько видов навигационных систем счисления координат для морского, воздушного и наземного применения. У ряда наземных подвижных объектов имеются одометрические системы счисления координат на основе счета числа оборотов стандартного колеса и проектирования полученных данных на координатные оси с использованием данных курсовой системы. Информация о пройденном расстоянии получается по одометру, а информация о направлении – по гироскопу. Если средство стартует с известного положения, то информацию о расстоянии и направлении можно использовать для определения положения в любой момент. Иными словами, предположив, что средство движется в горизонтальной плоскости, пройденный путь и направление можно проинтегрировать по времени, чтобы вычислить положение судна.Объединение GPS и геодезических работСреди самых быстро растущих применений GPS нужно отметитьгеодезические работы и управление механизмами на открытых карьерах.Использование GPS на открытых карьерах и разрезах может значительноуменьшить стоимость различных операций. Доступность GPS позиционирования в реальном времени на сантиметровом уровне точности привлекает внимание шахтной индустрии. Это главное, почему точное GPS позиционирование является ключевым компонентом, который ведет к автоматизации тяжелых и дорогих механизмов и машин. К сожалению, как и в предыдущих случаях, сигналы от спутников будут практически блокироваться по мере увеличения глубины карьера. Поэтому надежное позиционирование только по спутникам GPS в глубоких открытых карьерах невозможно.Использование псевдоспутниковОдна обещающая система для усиления GPS, гарантирующая высокоточное позиционирование, состоит в использовании системы псевдоспутников (или псевдолитов). Псевдоспутник – это электронный прибор наземного базирования, который передает GPS-подобный сигнал (несущая частота, кодовая модуляция и сообщение с данными), который может быть принят GPS приемником. В отличие от спутников GPS, на которых используются атомные генераторы, в псевдолитах для генерации сигналов используются недорогие кварцевые часы.Объединение GPS/ГЛОНАСС и средств мобильной связиТехнология сотовой связи становится широко принятой во всем мире. Иколичество пользователей, и площади охвата постоянно расширяются. Кроме того, растет покрытие более совершенной цифровой связью, допускающей передачу голоса и данных. Это делает сотовую систему очень привлекательной для ряда рынков, включая службы спасения, системы контроля транспорта и GPS.Главное ограничение систем мобильной связи – это их невозможность точно определять, откуда произведен вызов. Хотя это ограничение не является критическим для применений, подобных RTK GPS, оно крайне важно для служб спасения и автоматизированных систем контроля транспортных средств. В США, к примеру, почти 1/3 звонков в службу спасения 911 производится с мобильных телефонов. Из них почти 1/4 позвонивших не может точно описать свое местоположение, что создает трудности для операторов при посылке помощи. Поэтому Федеральная комиссия по связи (FCC) в США обязала с октября 2001 г. определять положения абонентов мобильной связи, обращающихся за помощью в службу 911, с точностью 127 м при вероятности 67% или лучше.Технология определения положения с помощью телефонной трубкиобъединяет GPS с сотовой связью через установку чипа GPS в трубке мобильного телефона. При выключенном режиме селективного доступа в этом методе можно определять положение абонента службы 911 с точностью, которая в 10 раз превосходит требования FCC. В отличие от сетевого метода, технология мобильных трубок очень проста в применении и не требует установки на базовых станциях телефонной сети специального оборудования (например, GPS приемников, определяющих точное время). Один из недостатков этой технологии состоит в том, что только новые телефоны могут быть оборудованы GPS. Кроме того, сигнал от GPS очень слабый для его приема внутри зданий.Комплексирование GPS с баровысотомеромТочность определения высоты кодовым приемником можно повысить, комплексируя его с баровысотомером. К примеру, имеющиеся на российском рынке приборы GARMIN eTrex Vista и GPSMAP 76S являются 12-канальными кодовыми приемниками. Они имеют встроенные в корпус приемника баровысотомер и цифровой компас. Паспортная точность определения высоты составляет 2 – 5 м.Недостатком измерений барометром является дрейф нуль-пункта,коррелируемый с перемещениями воздушных масс. При начальной точности 1м через час точность быстро ухудшается до 10 м. По аналогии с DGPS, использование барометрической базовой станции, размещаемой на известной высоте, значительно улучшает результаты, а также их временную стабильность.

morez.ru

Что такое глобальное позиционирование?

Сегодня, наверное, нет человека, который бы не слышал о GPS. Однако полное понимание того, что же это такое, есть далеко не у каждого. В статье попробуем разобраться, что же такое система глобального позиционирования, из чего она состоит и как работает.

История

Навигационная система GPS входит в комплекс Navstar, разработанный и функционирующий в Министерстве обороны США. Проект комплекса начали реализовывать еще в 1973 году. А уже в начале 1978-го, после успешного тестирования, запустили в эксплуатацию. К 1993 году вокруг Земли было запущено 24 спутника, полностью покрывающих поверхность нашей планеты. Гражданскую часть военной сети Navstar стали называть GPS, что означает Global Positoning System («система глобального позиционирования»).

Ее база состоит из спутников, которые движутся по шести круговым траекториям орбиты. В ширину они всего полтора метра, а в длину — немногим больше пяти. Вес при этом составляет порядка восьмисот сорока килограмм. Все они обеспечивают полную работоспособность в любой точке нашей планеты.

Слежение осуществляется с главной управляющей станции, находящейся в штате Колорадо. Там находится база ВВС Шривер — пятидесятое космическое соединение.

На Земле расположено более десяти станций, предназначенных для слежения. Они находятся на острове Вознесения, Гавайях, Кваджалейн, Диего-Гарсия, Колорадо-Спрингс, на мысе Канаверал и в других местах, количество которых растет с каждым годом. Вся информация, получаемая от них, перерабатывается на главной станции. Загрузка данных с поправками делается каждые двадцать четыре часа.

Такое глобальное позиционирование — спутниковая система, функционирующая под управлением МО США. Она работает при любой погоде и постоянно передает информацию.

Принцип функционирования

Системы глобального позиционирования GPS работают на основе следующих составляющих:

  • трилатерация спутника;
  • дальнометрия спутника;
  • точная привязка по времени;
  • расположение;
  • коррекция.

Рассмотрим их подробнее.

Под трилатерацией понимается расчет расстояния данных трех спутников, благодаря которому удается вычислить место расположения определенной точки.

Дальнометрия подразумевает расстояние до спутников, исчисляемое временем прохождения радиосигнала от них до приемника с учетом скорости света. Для определения времени генерируется псевдослучайный код, благодаря которому приемник способен в любое время зафиксировать задержку.

Следующий показатель говорит о прямой зависимости от точности часов. На спутниках работают атомные часы, точность которых составляет до одной наносекунды. Однако в силу дороговизны они используются не везде.

Спутники расположены на высоте свыше двадцати тысяч километров от Земли, ровно столько, сколько необходимо для стабильного движения по орбите и сужения сопротивления атмосферы.

При работе системы глобального позиционирования в мире совершаются ошибки, которые трудноустранимы. Это связано с прохождением сигнала через тропосферу и ионосферу, где скорость снижается, что приводит к сбоям в измерениях.

Компоненты картографической системы

Существует множество продуктов системы глобального позиционирования и ГИС-приложений для картографирования. Благодаря им географические данные быстро формируются и обновляются. Компонентами этих продуктов являются GPS-приемники, ПО и накопители данных.

Приемники способны делать вычисления с частотой менее секунды и точностью от десятков сантиметров до пяти метров, функционируя в дифференциальном режиме. Они отличаются друг от друга по габаритам, объему памяти и числу каналов слежения.

Пока человек стоит на одном месте или передвигается, приемник получает сигналы от спутников и делает вычисление о его расположении. Результаты в виде координат высвечиваются на дисплее.

Контроллеры представляют собой портативные компьютеры, которые функционируют под управлением ПО, необходимого для сбора данных. ПО контролирует установки приемника. Накопители имеют разные габариты и типы записи данных.

Каждая система оснащена программным обеспечением. После того как вы выгружаете информацию с накопителя на компьютер, программа увеличивает точность данных при помощи специального метода обработки, получившего название «дифференциальная коррекция». ПО визуализирует данные. Одни из них можно редактировать в ручном режиме, другие — выводить на печать и так далее.

GPS глобального позиционирования — системы, способствующие сбору информации для ввода в базы данных, а ПО экспортирует их в ГИС-программы.

Коррекция дифференциальная

Данный метод существенно повышает точность собираемых данных. При этом один из приемников находится в точке определенных координат, а другой собирает информацию там, где они неизвестны.

Дифференциальная коррекция реализуется двумя путями.

  • Первый — это дифференциальная коррекция в реальном времени, где вычисляются и выдаются ошибки каждого спутника основной станцией. Уточненные данные воспринимаются передвижным приемником, который показывает скорректированные данные.
  • Второй — дифференциальная коррекция в постобработке — имеет место тогда, когда основная станция записывает коррекции прямо на файл в компьютере. Изначальный файл обрабатывается вместе с уточненным, далее получается дифференциально скорректированный.

Картографические системы Trimble способны использовать оба метода. Таким образом, если режим в реальном времени прервется, то остается возможность его использования в постобработке.

Применение

GPS применяются в разных областях. Например, системы глобального позиционирования на местности широко используются в сфере природных ресурсов, где геологи, биологи, лесники и географы используют их для записи положений и дополнительной информации. Также это область развития инфраструктуры и городского хозяйства, когда контролируются транспортные потоки и коммунальная система.

Широкое применение GPS-системы глобального позиционирования получили и в сельском хозяйстве, описывая, например, особенности полей. В сфере социальных наук историки и археологи используют их для навигации и регистрации исторических мест.

Область применения картографических систем GPS этим не исчерпывается. Они могут быть использованы в любых других приложениях, где необходимы точные координаты, время и другая информация.

GPS-приемник

Это радиоприемное устройство, которое определяет координаты месторасположения антенны, основывась на информации о временных задержках радиосигналов от спутников Navstar.

Измерения формируются с точностью до трех-пяти метров, а если имеется сигнал от наземной станции — до одного миллиметра. GPS-навигаторы коммерческого типа на старых образцах имеют точность от ста пятидесяти метров, а на новых — до трех метров.

На основе приемников изготавливают GPS-логгеры, GPS-трекеры и GPS-навигаторы.

Оборудование может быть пользовательским и профессиональным. Второе отличается качеством, режимами работы, частотами, системами навигации и ценой.

Пользовательские приемники способны сообщить точные координаты, время, высоту над уровнем моря, направление, заданное пользователем, текущую скорость, информацию о дороге. Информация выводится на телефон или компьютер, к которому подключено устройство.

GPS-навигаторы: карты

Карты повышают качество навигатора. Они бывают векторного и растрового типов.

В векторных вариантах хранятся данные об объектах, координатах и другая информация. В них может быть заложена характеристика местности природного типа и множества объектов, например, гостиниц, заправок, ресторанов и т. д., так как они не содержат изображений, занимают меньше места и быстрее работают.

Растровые типы — наиболее простые. Они представляют собой изображение местности по географическим координатам. Может быть сделана фотография со спутника или карта бумажного типа — отсканированная.

В настоящее время есть навигационные системы, которые пользователь может дополнять своими объектами.

GPS-трекеры

Такое радиоприемное устройство принимает и передает данные для контроля и слежения за передвижениями различных объектов, к которым его прикрепляют. В него входит приемник, определяющий координаты, и передатчик, отправляющий их пользователю, находящемуся в удалении.

GPS-трекеры бывают:

  • персональными, используемыми индивидуально;
  • автомобильными, подключаемыми к бортовой автосети.

Их применяют для определения местонахождения различных объектов (людей, транспорта, животных, товаров и так далее).

Против этих устройств могут быть использованы средства подавления сигналов, формирующих помехи на тех частотах, где работает трекер.

GPS-логгер

Данные радиоприемники способны работать в двух режимах:

  • обычного GPS-приемника;
  • логгера, записывая в память информацию о пути, который был пройден.

Они могут быть:

  • портативными, оснащенными малогабаритной аккумуляторной батареей;
  • автомобильными, питающимися от бортовой сети.

В современных моделях логгеров имеется возможность записывания до двухсот тысяч точек. Также предлагается отмечать какие-либо точки на своем пути.

Устройства активно применяются в туризме, спорте, слежении, картографии, геодезии и так далее.

Глобальное позиционирование сегодня

На основе приведенной информации можно заключить, что подобные системы уже используются повсеместно, и сфера применения имеет тенденцию к еще большему распространению.

Глобальное позиционирование охватывает сферу потребления. Использование самых последних технических новинок делает систему одной из самых востребованных на этом сегменте рынка.

Наряду с GPS в России разрабатывается ГЛОНАСС, в Европе — Galileo.

В то же время глобальное позиционирование не лишено недостатков. Например, в квартире железобетонного здания, в тоннеле или подвале определить точное местонахождение невозможно. Нормальному приему способны помешать магнитные бури и радиоисточники, находящиеся на земле. Карты навигации быстро устаревают.

Самым большим недостатком является то, что система полностью зависит от Министерства обороны США, которое в любой момент может, например, включить помехи или отключить гражданскую часть вообще. Поэтому так важно, что помимо системы глобального позиционирования GPS и ГЛОНАСС, и Galileo также развиваются.

fb.ru

35. Системы позиционирования GPS и ГЛОНАС

35. Системы позиционирования GPS и ГЛОНАС.

Спутниковая система точного позиционирования (ССТП) функционирует на основе сигналов Глобальных навигационных спутниковых систем ГЛОНАСС и GPS. Целью ССТП является создание и поддержание в непрерывном режиме (круглосуточно) навигационного поля высокой точности. Под позиционированием понимают определение своего местоположения в пространстве. Навигационное поле должно обеспечить единство измерений и координатных расчетов для гражданских пользователей с уровнем точности, позволяющим вычислять координаты объектов в геоцентрических системах координат в режиме реального времени в положении статики за 1 минуту измерений и менее со средними квадратическими ошибками 2 см в плане, 3 см по высоте. Навигационные спутниковые системы предназначены для определения местоположения, скорости движения, а также точного времени морских, воздушных, сухопутных и других видов потребителей. NAVSTAR и ГЛОНАСС -  системы двойного назначения, изначально разработанные по заказу и под контролем военных  для нужд Министерств обороны  и поэтому первое, и основное назначение у систем стратегическое, второе назначение указанных систем гражданское. Спутниковая система позиционирования NAVSTAR изначально была разработана для нужд американского военного ведомства и  на долгие годы стала первой доступной системой спутникового позиционирования для гражданского пользователя. В СССР все работы над системой ГЛОНАСС были засекречены, а в момент распада сверхдержавы, развалились и многие отлаженные механизмы по разработке, выпуску и применению навигационных технологий. Все действующие ныне спутники передают два вида сигналов: стандартной точности для гражданских пользователей и высокой точности для военных пользователей (этот сигнал закодирован и доступен только при предоставлении соответствующего уровня доступа от Министерства обороны). Навигационные системы являются независимыми (полностью автономными) и беззапросными и используют сигналы на основе «псевдошумовых последовательностей», применение которых придаёт им высокую помехозащищённость и надёжность при невысокой мощности излучения передатчиков.

 Навигационные системы NAVSTAR GPS и ГЛОНАСС состоят из трёх основных  подсистем:

1. подсистема космических аппаратов (Спутники - 24 спутника, разбитые по группам, вращаются в своих орбитальных плоскостях на неизменной средневысотной орбите, на постоянном расстоянии от поверхности Земли - 100 км. По 12 спутников на каждое полушарие. Орбиты этих спутников образуют “сетку” над поверхностью земли, благодаря чему над горизонтом всегда гарантированно находятся минимум четыре спутника.)

2.    подсистема контроля и управления (состоит из:-  центра управления навигационной системой со своим вычислительным центром

-  развёрнутой сети станций измерения управления и контроля, связанных между собой

- центром управления каналами связи и наземного эталона времени и частоты “атомных часов”, для синхронизации бортовых “атомных часов” спутников (этот эталон более высокоточный,  чем те, что установлены на спутниках))

3.    навигационной аппаратуры потребителей

Сферы применения систем точного позиционирования:

кадастр недвижимости, землеустройство и мониторинг земель, геодезия и картография, в том числе создание геодезических сетей различного назначения, создание топографических карт и планов; планирование территорий, градостроительство, строительство промышленных и других объектов, проектно-изыскательские работы, прокладка железнодорожных и автомобильных магистралей, мостов и других сооружений на дорогах, нефте- и газопроводов, линий электропередач и связи, проектно-изыскательские работы, исполнительные съёмки; разработка природных ресурсов, в том числе проектно-изыскательские работы, разработка карьеров, управление техникой (бульдозеры и пр.) координирование скважин и других ресурсодобывающих объектов, исполнительные съёмки, природоохранные мероприятия; коммунальное хозяйство, сельское хозяйство, геодинамика и мониторинг геологической среды, деформации и смещения инженерных сооружений и грунтов и др.

studfiles.net


Смотрите также